
1 | P a g e

Design of an 8x8 SRAM Array

IRFANUL ISLAM
Department of Electrical & Computer

Engineering
Concordia University
Student ID: 40207134

OMAR DABAYEH
Department of Electrical & Computer

Engineering
Concordia University
Student ID: 40100195

Abstract— The objective of this project is to design and
implement an 8-row by 8-bit SRAM memory array using TSMC
180nm CMOS technology. The memory array is accessed
through a 3-to-8 decoder, driven by a 3-bit address. The SRAM
cells are optimized to achieve low power consumption, while
operating efficiently during read and write cycles. The test
bench, design, and layout of the SRAM array and its peripheral
circuitry, including the decoder, are developed and validated
using Cadence Virtuoso’s Analog Design Environment (ADE).
Simulations are carried out to verify functionality, power
efficiency, and timing performance, ensuring the design meets
modern embedded system requirements.

Keywords—Cadence, CMOS, Decoder, SRAM, Layout.

I. INTRODUCTION

Static Random Access Memory (SRAM) is a type of
semiconductor memory widely used in digital electronics due
to its high speed and low power consumption during
operation. Unlike Dynamic Random Access Memory
(DRAM), SRAM does not require periodic refreshing of
stored data, making it "static" and more efficient for high-
performance applications.

Key Features of SRAM:

1. Volatile Memory: Like other RAM types, SRAM is
volatile, meaning it loses its data when power is
removed. However, it retains data as long as power
is supplied without requiring refresh cycles.

2. Structure: SRAM consists of bistable latching
circuits, typically built using six transistors (6T) per
cell. This design ensures faster access times and
greater reliability compared to DRAM.

3. Speed: With lower latency and faster access times,
SRAM is ideal for applications that demand quick
data retrieval and processing.

4. Power Consumption: While idle power consumption
is low, SRAM can consume more power during
active operations compared to other types of memory
like DRAM.

5. Integration: SRAM is often used as cache memory in
CPUs, GPUs, and other high-speed processors due to
its rapid access capabilities. It is also employed in
embedded systems, networking devices, and other
performance-critical systems.

Advantages of SRAM:

 High Speed: Faster than DRAM due to the absence
of refresh cycles.

 Simpler Control Logic: SRAM requires simpler
memory controllers compared to DRAM.

 Data Stability: Retains data without the need for
frequent refreshing.

Disadvantages of SRAM:

 Lower Density: SRAM requires more transistors per
memory cell, making it less dense than DRAM.

 Higher Cost: Due to its complexity, SRAM is more
expensive to manufacture.

 Larger Physical Size: The 6T cell structure results in
larger memory modules compared to DRAM.

Applications:

 Cache Memory: Used in processors for fast,
temporary data storage.

 Embedded Systems: Integrated into microcontrollers
and SoCs for specialized tasks.

 Networking: Deployed in routers and switches for
rapid data handling.

 Graphics Processing: Used in GPUs for buffering
and rendering operations.

SRAM's speed and reliability make it a cornerstone of
modern memory technology, essential for systems requiring
high-performance computation and efficient data access.

II. DESIGN DESCRIPTION

This project focuses on the design and development of an
8-bit SRAM (Static Random Access Memory) array using
TSMC's 180nm CMOS technology. SRAM is a critical
component in modern digital systems, providing high-speed,
low-latency memory storage for a wide range of applications.
The goal of this project is to create an optimized and efficient
SRAM layout while maintaining robust functionality and high
performance.

Key Design Features:

1. Memory Array: The core of the SRAM is an array of
8-bit word storage cells. These cells are organized to
allow efficient storage and retrieval of data with
minimal delay.

2. Wordline Decoder: This subsystem uses address
input pins to select specific rows in the memory
array. By activating the corresponding wordline, it
enables access to the storage cells for reading or
writing operations.

3. Bitline Drivers: During write operations, these
drivers take data from the input pins and drive the
corresponding bitlines, ensuring accurate data
storage in the selected memory cells.

2 | P a g e

4. Sense Amplifier: Critical for read operations, the
sense amplifier amplifies and stabilizes the small
signals read from the bitlines. This ensures reliable
data output, suitable for external circuitry.

5. Control Signals: Essential operational modes are
determined by control signals:

 Decoder Enable (DEN): Activates the
Decoder for operation.

 Write Enable (WEN): Specifies write
operations.

 Read Enable (REN): Specifies read
operations.

6. Data Bus (D0-D7): The data bus provides an 8-bit bi-
directional interface for data input and output,
enabling seamless communication between the
SRAM and external systems.

Fig 1: SRAM Array & Decoder Block Diagram

The 1mm wire is connected to each of the outputs O1-
O7.

III. DESIGN HIERARCHY

The circuit is designed using three basic blocks.

A. Decoder:

Fig 2: 3 to 8 Decoder Design

The decoder circuit diagram represents a 3-to-8 decoder
with an enable signal. It is commonly used in digital systems
to activate one of eight output lines (W0 to W7) based on a 3-
bit binary input (A2, A1, A0) and the enable signal. Here’s a
breakdown of the components and functionality:

Components:

1. Inputs:

 A2, A1, A0: These are the 3-bit address
inputs, which determine which output (W0
to W7) is selected.

 Enable: This signal enables or disables the
decoder. When the enable signal is low, all
outputs will remain high, regardless of the
address inputs.

2. Inverters:

 Each address input (A2, A1, A0) has an
associated inverter to produce the
complemented signals (A2, 𝐴1, A0).

 These complemented signals are used
alongside the original signals for decoding.

3. NAND Gates:

 There are 8 4-input NAND gates in the
circuit. Each NAND gate takes the Enable
signal as one input and a unique
combination of the original and
complemented address signals as the other
three inputs.

4. Outputs:

 W0,W1,…,W7: These are the 8 decoder
outputs. Exactly one output will be active
(low) at a time based on the 3-bit address
input and the enable signal.

Functionality:

 Enable Signal:

 If the Enable signal is high (1), the decoder
is operational, and one of the outputs will
be low based on the address inputs.

 If the Enable signal is low (0), all outputs
remain high, effectively disabling the
decoder.

 Decoding Logic:

 Each NAND gate output is determined by a
specific combination of address inputs:

W௜

= Enable⋅Combination of A2,A1,A0 & their complements

For example:

 W0=Enable ⋅ A2 ⋅ A1 ⋅ A0

 W1=Enable ⋅ A2 ⋅ A1 ⋅ A0

 W7=Enable ⋅ A2 ⋅ A1 ⋅ A0

Circuit Behavior:

 Active-Low Outputs:

 For a given input combination (e.g.,
A2A1A0=000), the corresponding output
(W0) will go low (0), while all others (W1–
W7) remain high (1).

3 | P a g e

 This is because a NAND gate produces a
low output only when all its inputs are high.

 Example:

 Suppose A2=0, A1=1, A0=1, and Enable =
1.

 The decoder activates W3 by generating:

W3=Enable ⋅ A2 ⋅ A1 ⋅ A0 =

1 ⋅ 1 ⋅ 1 ⋅ 1 = 0

Advantages of Using NAND Gates:

1. Simpler Implementation: NAND gates are more
commonly used in CMOS design due to their ease of
fabrication.

2. Inherent Active-Low Logic: Many digital systems
and devices use active-low control signals, making
this implementation more practical for such systems.

Fig 3: Decoder Implementation

Fig 4: Decoder Symbol

The figure below shows the circuit used to implement the
NAND gates for the 3 to 8 Decoder.

Fig 5: 4 input static CMOS NAND gate

4 | P a g e

Fig 6: NAND Gate Implementation

Fig 7: NAND Gate Symbol

B. SRAM:

The figure below shows the SRAM circuit design used to
build the 8x8 SRAM array including the sense amplifier.

Fig 8: An SRAM Cell & Sense Amplifier

a) 6T SRAM Cell Circuit

This is a standard 6-transistor (6T) SRAM cell, the
building block of SRAM arrays. Here's a description:

1. Components:

 Two cross-coupled inverters:

 MP1 and MN1 form the first inverter.

 MP2 and MN2 form the second
inverter.

 Two access transistors:

 MN3 and MN4 act as the access
transistors.

2. Inputs/Outputs:

 Wordline (WL): Controls access to the cell.
When high, it enables the access transistors.

 Bitline (BL) and Complementary Bitline
(BLB): These are used for reading and
writing data into the cell.

 Q and QB: The internal storage nodes that
hold complementary data (0 and 1).

3. Operation:

 Write Operation:

 The wordline (WL) is asserted high,
turning on MN3 and MN4.

 Data is written into the cell via the
bitlines (BL and BLB), forcing the
internal nodes Q and QB to the desired
values.

 Read Operation:

 The wordline (WL) is asserted high,
turning on MN3 and MN4.

 The stored value is sensed by
monitoring the bitlines (BL and BLB),
which are precharged and then slightly
discharged depending on the data
stored in the cell.

4. Advantages:

 Robust data retention due to the cross-
coupled inverter structure.

 High-speed access for both read and write
operations.

Fig 9: SRAM Cell Implementation

5 | P a g e

Fig 10: SRAM Cell Symbol

b) Sense Amplifier Circuit

This is a sense amplifier, used to detect and amplify the
small voltage difference on the bitlines during a read
operation.

1. Components:

 PMOS Transistors:

 MP7 and MP8: Act as pull-up devices,
ensuring proper operation during
amplification.

 NMOS Transistors:

 MN9, MN10: Act as the differential pair to
sense the voltage difference between BL and
BLB.

 MN11: Acts as an enable switch, controlled
by the sense enable (SE) signal.

2. Inputs/Outputs:

 Bitline (BL) and Complementary Bitline (BLB):
Carry the small voltage difference from the
SRAM cell.

 Sense Enable (SE): Activates the sense amplifier
when high.

 Output (OUT): Provides the amplified output
signal.

3. Operation:

 Before reading, the bitlines (BL and BLB) are
precharged to the same voltage level.

 When the sense amplifier is enabled (SE is high),
MN11MN11MN11 turns on, and the circuit
begins sensing.

 The differential pair (MN9MN9MN9 and
MN10MN10MN10) detects the slight voltage
difference between BL and BLB.

 The output signal (OUT) is driven to a logic level
(high or low) based on the sensed difference.

4. Advantages:

 Amplifies small voltage differences on the
bitlines for reliable data readout.

 Operates with high speed and precision.

Combined Functionality:

The 6T SRAM Cell stores the data, while the Sense
Amplifier ensures the stored data is read correctly, even when
the voltage differences on the bitlines are small. These circuits
are critical in achieving fast and reliable memory operation in
SRAM systems.

Fig 11: Sense Amplifier Implementation

Fig 12: Sense Amplifier Symbol

Fig 13: 1mm wire on 1 Sense Amplifier

C. Bitline Drivers:

This component acts as a bitline driver in an SRAM
system, ensuring proper control of the bitlines during read
and write operations. Its primary roles are:

6 | P a g e

1. To drive the bitlines during a write operation with the
correct logic levels corresponding to the input data.

2. To isolate the bitlines during a read operation,
allowing the sense amplifier to detect small voltage
differences accurately.

Circuit Functionality:

1. Write Operation:

 When WEN (Write Enable) is asserted:

 The circuit actively drives the bitlines (BL and
NOTBL) with the input data (IN).

 The inverters and the PMOS/NMOS
transistor pairs ensure that the correct voltage
levels are driven onto the bitlines.

 For example:

o If IN = 1, BL is driven high
(VDD), and NOTBL is driven low
(VSS).

o If IN = 0, BL is driven low (VSS),
and NOTBL is driven high
(VDD).

 This ensures that the correct logic levels are
applied to the SRAM cell for writing data.

2. Read Operation:

 When REN (Read Enable) is asserted:

 The circuit likely disables the driving of the
bitlines (BL and NOTBL) to avoid interfering
with the small voltage signals generated by
the SRAM cell during a read.

 Instead, the bitlines are left in a high-
impedance state or precharged to a specific
voltage level (e.g., VDD) before sensing.

3. Idle State:

 When neither WEN nor REN is active:

The circuit may enter a low-power state, where it does not
drive the bitlines actively, reducing power consumption.

Fig 14: Bitline Drivers Implementation

Fig 15: Bitline Drivers Symbol

Final Circuit:

The circuit below shows the final implementation in
Cadence using all the components listed above.

7 | P a g e

Fig 16: Final Circuit Implementation

IV. SIZING

We chose not to perform detailed sizing for the SRAM cell
because the performance and stability of the circuit were
found to be satisfactory. Through our simulations and initial
testing, we observed that the design met the required
operational criteria without the need for further optimization.
Additionally, due to time constraints, we prioritized
completing the schematic, layout, and other essential tasks
over fine-tuning the sizing, as it was deemed non-critical to
achieving the project objectives within the given timeline.

V. LAYOUT (LVS/DRC)

Below are the screenshots for LVS & DRC for each
component & sub units including the final circuit. The
appendix folder attached to the report contains the screenshots
too for a better view of the images.

A word file has also been attached in the appendix
containing all the layouts.

Fig 17: LVS NAND Gate

Fig 18: DRC NAND Gate

Fig 19: LVS DECODER

Fig 20: DRC DECODER

Fig 21: LVS SRAM CELL

8 | P a g e

Fig 22: DRC SRAM Cell

Fig 23: LVS Sense Amplifier

Fig 24: DRC Sense Amplifier

Fig 25: LVS Bitline Drivers

Fig 26: DRC Bitline Drivers

Fig 27: LVS Final Layout

Fig 28: DRC Final Layout

VI. SIMULATIONS

Below are some simulations performed on the circuit with
their results given.

9 | P a g e

A. General Simulations:

Fig 29: Typical Typical Simulation

Fig 30: Fast Fast Simulation

B. Read Time:

Fig 31: Read Delay Simulation

Brown wire: Output

Red wire: Q

Pink wire: BLB

Orange wire: BL

Green wire: Word Line

Blue wire: Decoder Enable

A video is attached in the appendix explaining the results
for a better understanding of the simulation.

C. Write time:

Fig 32: Write Delay Simulation

A video is attached in the appendix explaining the results
for a better understanding of the simulation.

D. Parasitic Capacitance:

The code below was used to generate the parasitic
capacitance for each node.

Code:

Path to the PEX file

pex_file = ‘/mnt/data/PROJECTFINAL.pex.txt’

Regex to match capacitance entries

cap_regex = r”mr_pp\s+’c\s+\”(\S+)\”\s+’\((\”.+?\”
\”?.*?\”)\)\s+([\d.eE+-]+)f”

Store extracted capacitance data

capacitance_data = []

with open(pex_file, ‘r’) as file:

 for line in file:

 match = re.match(cap_regex, line)

 if match:

 component = match.group(1)

 nodes = match.group(2).strip(‘()’).split(‘ ‘)

 value = float(match.group(3)) * 1e-15 # Convert
femtofarads to farads

 capacitance_data.append({‘component’:
component, ‘nodes’: nodes, ‘value’: value})

Display extracted capacitances

print(f”Extracted {len(capacitance_data)} capacitances:”)

for cap in capacitance_data[:10]: # Show the first 10
entries

 print(f”Component: {cap[‘component’]}, Nodes:
{cap[‘nodes’]}, Value: {cap[‘value’]} F”)

10 | P a g e

Result:

Extracted 21060 capacitances:

Component: ciXI196/NET17_34, Nodes: [‘”c_4_n”’,
‘”0”’], Value: 4.7541e-17 F

Component: ciXI196/NET17_35, Nodes: [‘”c_3_n”’,
‘”0”’], Value: 6.492350000000001e-16 F

Component: ciXI196/NET17_36, Nodes:
[‘”I196/MM8_g”’, ‘”0”’], Value: 2.8134800000000005e-17
F

Component: ciXI196/NET17_37, Nodes:
[‘”I196/NET17_68”’, ‘”0”’], Value: 3.5797500000000004e-
17 F

Component: ciXI196/NET17_38, Nodes:
[‘”I196/NET17_67”’, ‘”0”’], Value: 5.12249e-16 F

Component: ciXI196/NET17_39, Nodes:
[‘”I196/NET17_66”’, ‘”0”’], Value: 3.5797500000000004e-
17 F

Component: ciXI196/NET17_40, Nodes: [‘”c_10_n”’,
‘”0”’], Value: 3.52253e-16 F

Component: ciXI196/NET17_41, Nodes: [‘”c_5_n”’,
‘”0”’], Value: 4.1651500000000004e-17 F

Component: ciXI196/NET17_42, Nodes: [‘”c_30_n”’,
‘”0”’], Value: 4.017020000000001e-17 F

Component: ciXI196/NET17_43, Nodes: [‘”c_29_n”’,
‘”0”’], Value: 1.1852800000000002e-16 F

Key Components

1. Component Name (ciXI196/NET17_xx):

o This is a unique identifier for each extracted
capacitance. The prefix (ciXI196) might
represent a hierarchical block in your
design (e.g., a submodule or instance).

o NET17_xx specifies the specific net
associated with the parasitic capacitance.

2. Nodes:

o The parasitic capacitance is extracted
between the listed nodes.

o Example: [‘”c_4_n”’, ‘”0”’] means the
capacitance exists between node c_4_n and
the ground node (denoted as “0”).

3. Value:

o The capacitance value in Farads.

o Example: 4.7541e-17 F (47.541 attofarads,
a very small capacitance).

Interpretation of Each Entry

10. ciXI196/NET17_34

 Nodes: c_4_n to 0 (ground).

 Value: 4.7541e-17 F (very small, likely due to a
small parasitic path, e.g., fringe capacitance).

11. ciXI196/NET17_35

 Nodes: c_3_n to 0 (ground).

 Value: 6.492350000000001e-16 F (significantly
larger, could be due to a wider or longer
interconnect).

12. ciXI196/NET17_36

 Nodes: I196/MM8_g to 0 (ground).

 Value: 2.8134800000000005e-17 F (small gate
parasitic capacitance on MM8 transistor).

13. ciXI196/NET17_37

 Nodes: I196/NET17_68 to 0 (ground).

 Value: 3.5797500000000004e-17 F (small
capacitance, likely due to a short wire or minimal
coupling).

14. ciXI196/NET17_38

 Nodes: I196/NET17_67 to 0 (ground).

 Value: 5.12249e-16 F (larger capacitance, might
indicate a significant overlap or coupling effect).

15. ciXI196/NET17_39

 Nodes: I196/NET17_66 to 0 (ground).

 Value: 3.5797500000000004e-17 F (similar to
NET17_37).

16. ciXI196/NET17_40

 Nodes: c_10_n to 0 (ground).

 Value: 3.52253e-16 F (medium-size parasitic
capacitance).

17. ciXI196/NET17_41

 Nodes: c_5_n to 0 (ground).

 Value: 4.1651500000000004e-17 F.

9. ciXI196/NET17_42

 Nodes: c_30_n to 0 (ground).

 Value: 4.017020000000001e-17 F.

10. ciXI196/NET17_43

 Nodes: c_29_n to 0 (ground).

 Value: 1.1852800000000002e-16 F (larger than
most, might indicate significant coupling or area
overlap).

General Observations

1. Values and Scale:

o The capacitances are on the order of
attofarads (10⁻¹⁸ F) to femtofarads (10⁻¹⁵ F),
which is typical for parasitic capacitances in
modern nanometer-scale designs.

2. Dominant Contributions:

o Larger capacitance values (e.g., 6.49235e-
16 F) often arise from:

 Wider or longer interconnects.

11 | P a g e

 Coupling between closely spaced
conductors.

 Overlap of interconnect layers.

3. Small Values:

o Smaller capacitances (e.g., 2.81348e-17 F)
might be due to fringe effects or minimal
coupling.

4. Hierarchy and Nodes:

o The node names (e.g., I196/MM8_g)
indicate parasitics related to specific parts
of the circuit, such as transistor gates (_g)
or interconnect nets.

E. Area of the circuitry:

Fig 33: Length of a SRAM Cell

Fig 34: Width of a SRAM Cell

Fig 35: Length of Final Circuit

Fig 36: Width of Final Circuit

The total area is calculated by:

Total Area = 339.7 × 1107.8 = 376319.66 unitsଶ

VII. CONCLUSIONS

This project provided valuable insights into the design and
implementation of an 8×8 SRAM array using TSMC 180nm
CMOS technology. Here are the key takeaways:

A. Lessons Learned

Through the design and layout process, we gained a deeper
understanding of:

 The importance of parasitic effects (capacitances and
resistances) in high-performance memory designs.

 The critical role of layout precision and hierarchy in
achieving efficient, manufacturable designs.

 Optimizing circuit performance by balancing layout
constraints, circuit sizing, and timing.

We also experienced firsthand how pitch-matching
wordline and bitline circuitry to the SRAM array grid ensures
both uniformity and efficiency in the design process. This
provided excellent practice in layout and reinforced the

12 | P a g e

importance of adhering to standard design practices in
memory arrays.

B. Design Decisions

We made several strategic decisions to ensure
functionality, efficiency, and simplicity:

 Prioritizing Pitch-Matching: Wordline and bitline
circuitry were laid out to be pitch-matched to the
SRAM array. This choice was made to simplify
routing, maintain layout uniformity, and align with
industry practices for memory design.

 Parasitic Mitigation: High-parasitic nodes were
identified during extraction, and their impact was
minimized by carefully managing wire lengths and
spacing in critical areas.

 Time Allocation: Due to time constraints, we
focused on completing the layout and ensuring
LVS/DRC compliance rather than extensive sizing
optimization.

C. Handling Long Wires and Resistive Loads

The 1mm wire in the circuit posed challenges related to
parasitic capacitances and resistive loading:

 Mitigation Approach: Parasitic effects were
analyzed, and wire resistance was factored into
simulations to ensure timing and signal integrity.

 Wire Design: The wire was carefully routed and
optimized within the layout to minimize resistance
and capacitance while maintaining layout
constraints.

D. Sizing Choices

 SRAM Cell Sizing: The standard 6T SRAM cell
design was used with transistor sizes chosen to
balance speed, stability, and power consumption.
The sizing met functional requirements during
simulations without requiring further tuning.

 Peripheral Circuitry Sizing: Components like the
wordline decoder, sense amplifiers, and bitline
drivers were sized to ensure proper signal
propagation and accurate read/write operations.

 Focus on Stability: The sizing decisions prioritized
stability and robustness over aggressive optimization
to ensure reliable operation.

E. Layout Choices

 Pitch-Matching: The wordline and bitline circuitry
were laid out to align with the SRAM array pitch.
This approach simplified routing, reduced area
waste, and ensured alignment with memory cell rows
and columns, enhancing manufacturability.

 Hierarchical Design: The design followed a
hierarchical approach, where sub-blocks like
decoders, sense amplifiers, and bitline drivers were
individually laid out and integrated into the final
array.

 Minimizing Parasitics: Layout decisions emphasized
minimizing parasitics by reducing interconnect
lengths and using efficient routing strategies in
critical paths.

In conclusion, this project provided valuable experience in
SRAM design, from schematic-level decisions to layout and
parasitic analysis. The use of pitch-matched layout for
wordline and bitline circuitry not only improved integration
but also gave us practical experience in precision layout
design. Despite challenges like handling the 1mm wire, the
final design met functional requirements, demonstrating a
balance between performance, layout efficiency, and
manufacturability.

REFERENCES

[1] S. S. Kadam and P. Bhatasana, "Design of 16-bit Low Power SRAM in

180nm CMOS Technology," Journal of Current Research in
Engineering and Science, vol. 2, no. 1, pp. 55-60, 2022.

[2] R. K. Sah, I. Hussain, and M. Kumar, "Performance Analysis of a 6T
SRAM Cell in 180nm CMOS Technology," IOSR Journal of VLSI and
Signal Processing, vol. 5, no. 2, pp. 20-22, 2015.

[3] P. Athe and S. Dasgupta, "A Comparative Study of 6T, 8T and 9T
Decanano SRAM Cell," in Proceedings of the IEEE Symposium on
Industrial Electronics and Applications, Kuala Lumpur, Malaysia,
2009, pp. 889-894.

[4] F. Moradi and J. K. Madsen, "Improved Read and Write Margins Using
a Novel 8T-SRAM Cell," in Proceedings of the IEEE/IFIP
International Conference on VLSI and System-on-Chip, Santa Cruz,
CA, USA, 2012, pp. 1-4.

[5] D. Aggarwal, P. Kaushik, and N. Gujran, "A Comparative Study of 6T,
8T and 9T SRAM Cell," International Journal of Latest Trends in
Engineering and Technology, vol. 1, no. 1, pp. 44-52, 2012.

