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Abstract— The objective of this project is to design and 
implement an 8-row by 8-bit SRAM memory array using TSMC 
180nm CMOS technology. The memory array is accessed 
through a 3-to-8 decoder, driven by a 3-bit address. The SRAM 
cells are optimized to achieve low power consumption, while 
operating efficiently during read and write cycles. The test 
bench, design, and layout of the SRAM array and its peripheral 
circuitry, including the decoder, are developed and validated 
using Cadence Virtuoso’s Analog Design Environment (ADE). 
Simulations are carried out to verify functionality, power 
efficiency, and timing performance, ensuring the design meets 
modern embedded system requirements. 
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I. INTRODUCTION 

Static Random Access Memory (SRAM) is a type of 
semiconductor memory widely used in digital electronics due 
to its high speed and low power consumption during 
operation. Unlike Dynamic Random Access Memory 
(DRAM), SRAM does not require periodic refreshing of 
stored data, making it "static" and more efficient for high-
performance applications. 

Key Features of SRAM: 

1. Volatile Memory: Like other RAM types, SRAM is 
volatile, meaning it loses its data when power is 
removed. However, it retains data as long as power 
is supplied without requiring refresh cycles. 

2. Structure: SRAM consists of bistable latching 
circuits, typically built using six transistors (6T) per 
cell. This design ensures faster access times and 
greater reliability compared to DRAM. 

3. Speed: With lower latency and faster access times, 
SRAM is ideal for applications that demand quick 
data retrieval and processing. 

4. Power Consumption: While idle power consumption 
is low, SRAM can consume more power during 
active operations compared to other types of memory 
like DRAM. 

5. Integration: SRAM is often used as cache memory in 
CPUs, GPUs, and other high-speed processors due to 
its rapid access capabilities. It is also employed in 
embedded systems, networking devices, and other 
performance-critical systems. 

Advantages of SRAM: 

 High Speed: Faster than DRAM due to the absence 
of refresh cycles. 

 Simpler Control Logic: SRAM requires simpler 
memory controllers compared to DRAM. 

 Data Stability: Retains data without the need for 
frequent refreshing. 

Disadvantages of SRAM: 

 Lower Density: SRAM requires more transistors per 
memory cell, making it less dense than DRAM. 

 Higher Cost: Due to its complexity, SRAM is more 
expensive to manufacture. 

 Larger Physical Size: The 6T cell structure results in 
larger memory modules compared to DRAM. 

Applications: 

 Cache Memory: Used in processors for fast, 
temporary data storage. 

 Embedded Systems: Integrated into microcontrollers 
and SoCs for specialized tasks. 

 Networking: Deployed in routers and switches for 
rapid data handling. 

 Graphics Processing: Used in GPUs for buffering 
and rendering operations. 

SRAM's speed and reliability make it a cornerstone of 
modern memory technology, essential for systems requiring 
high-performance computation and efficient data access. 

II. DESIGN DESCRIPTION 

This project focuses on the design and development of an 
8-bit SRAM (Static Random Access Memory) array using 
TSMC's 180nm CMOS technology. SRAM is a critical 
component in modern digital systems, providing high-speed, 
low-latency memory storage for a wide range of applications. 
The goal of this project is to create an optimized and efficient 
SRAM layout while maintaining robust functionality and high 
performance. 

Key Design Features: 

1. Memory Array: The core of the SRAM is an array of 
8-bit word storage cells. These cells are organized to 
allow efficient storage and retrieval of data with 
minimal delay. 

2. Wordline Decoder: This subsystem uses address 
input pins to select specific rows in the memory 
array. By activating the corresponding wordline, it 
enables access to the storage cells for reading or 
writing operations. 

3. Bitline Drivers: During write operations, these 
drivers take data from the input pins and drive the 
corresponding bitlines, ensuring accurate data 
storage in the selected memory cells. 
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4. Sense Amplifier: Critical for read operations, the 
sense amplifier amplifies and stabilizes the small 
signals read from the bitlines. This ensures reliable 
data output, suitable for external circuitry. 

5. Control Signals: Essential operational modes are 
determined by control signals: 

 Decoder Enable (DEN): Activates the 
Decoder for operation. 

 Write Enable (WEN): Specifies write 
operations. 

 Read Enable (REN): Specifies read 
operations. 

6. Data Bus (D0-D7): The data bus provides an 8-bit bi-
directional interface for data input and output, 
enabling seamless communication between the 
SRAM and external systems. 

 

Fig 1: SRAM Array & Decoder Block Diagram 

The 1mm wire is connected to each of the outputs O1-
O7. 

III. DESIGN HIERARCHY 

The circuit is designed using three basic blocks. 

A. Decoder: 

 

 

Fig 2: 3 to 8 Decoder Design 

The decoder circuit diagram represents a 3-to-8 decoder 
with an enable signal. It is commonly used in digital systems 
to activate one of eight output lines (W0 to W7) based on a 3-
bit binary input (A2, A1, A0) and the enable signal. Here’s a 
breakdown of the components and functionality: 

Components: 

1. Inputs: 

 A2, A1, A0: These are the 3-bit address 
inputs, which determine which output (W0 
to W7) is selected. 

 Enable: This signal enables or disables the 
decoder. When the enable signal is low, all 
outputs will remain high, regardless of the 
address inputs. 

2. Inverters: 

 Each address input (A2, A1, A0) has an 
associated inverter to produce the 
complemented signals (A2, 𝐴1, A0). 

 These complemented signals are used 
alongside the original signals for decoding. 

3. NAND Gates: 

 There are 8 4-input NAND gates in the 
circuit. Each NAND gate takes the Enable 
signal as one input and a unique 
combination of the original and 
complemented address signals as the other 
three inputs. 

4. Outputs: 

 W0,W1,…,W7: These are the 8 decoder 
outputs. Exactly one output will be active 
(low) at a time based on the 3-bit address 
input and the enable signal. 

Functionality: 

 Enable Signal: 

 If the Enable signal is high (1), the decoder 
is operational, and one of the outputs will 
be low based on the address inputs. 

 If the Enable signal is low (0), all outputs 
remain high, effectively disabling the 
decoder. 

 Decoding Logic: 

 Each NAND gate output is determined by a 
specific combination of address inputs:  

W௜

= Enable⋅Combination of A2,A1,A0 & their complements 

For example: 

 W0=Enable ⋅ A2 ⋅ A1 ⋅ A0 

 W1=Enable ⋅ A2 ⋅ A1 ⋅ A0 

 W7=Enable ⋅ A2 ⋅ A1 ⋅ A0 

 

Circuit Behavior: 

 Active-Low Outputs: 

 For a given input combination (e.g., 
A2A1A0=000), the corresponding output 
(W0) will go low (0), while all others (W1–
W7) remain high (1). 
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 This is because a NAND gate produces a 
low output only when all its inputs are high. 

 Example: 

 Suppose A2=0, A1=1, A0=1, and Enable = 
1. 

 The decoder activates W3 by generating: 

W3=Enable ⋅ A2 ⋅ A1 ⋅ A0 =

1 ⋅ 1 ⋅ 1 ⋅ 1 = 0 

Advantages of Using NAND Gates: 

1. Simpler Implementation: NAND gates are more 
commonly used in CMOS design due to their ease of 
fabrication. 

2. Inherent Active-Low Logic: Many digital systems 
and devices use active-low control signals, making 
this implementation more practical for such systems. 

 

 

 
Fig 3: Decoder Implementation 

 
Fig 4: Decoder Symbol 

 

The figure below shows the circuit used to implement the 
NAND gates for the 3 to 8 Decoder.  

 

Fig 5: 4 input static CMOS NAND gate 
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Fig 6: NAND Gate Implementation 

 

Fig 7: NAND Gate Symbol 

 

B. SRAM: 

The figure below shows the SRAM circuit design used to 
build the 8x8 SRAM array including the sense amplifier. 

 

Fig 8: An SRAM Cell & Sense Amplifier 

 

a) 6T SRAM Cell Circuit 

This is a standard 6-transistor (6T) SRAM cell, the 
building block of SRAM arrays. Here's a description: 

1. Components: 

 Two cross-coupled inverters: 

 MP1 and MN1 form the first inverter. 

 MP2 and MN2 form the second 
inverter. 

 Two access transistors: 

 MN3 and MN4 act as the access 
transistors. 

2. Inputs/Outputs: 

 Wordline (WL): Controls access to the cell. 
When high, it enables the access transistors. 

 Bitline (BL) and Complementary Bitline 
(BLB): These are used for reading and 
writing data into the cell. 

 Q and QB: The internal storage nodes that 
hold complementary data (0 and 1). 

3. Operation: 

 Write Operation: 

 The wordline (WL) is asserted high, 
turning on MN3 and MN4. 

 Data is written into the cell via the 
bitlines (BL and BLB), forcing the 
internal nodes Q and QB to the desired 
values. 

 Read Operation: 

 The wordline (WL) is asserted high, 
turning on MN3 and MN4. 

 The stored value is sensed by 
monitoring the bitlines (BL and BLB), 
which are precharged and then slightly 
discharged depending on the data 
stored in the cell. 

4. Advantages: 

 Robust data retention due to the cross-
coupled inverter structure. 

 High-speed access for both read and write 
operations. 

 
Fig 9: SRAM Cell Implementation 
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Fig 10: SRAM Cell Symbol 

 
b) Sense Amplifier Circuit 

This is a sense amplifier, used to detect and amplify the 
small voltage difference on the bitlines during a read 
operation. 

1. Components: 

 PMOS Transistors: 

 MP7 and MP8: Act as pull-up devices, 
ensuring proper operation during 
amplification. 

 NMOS Transistors: 

 MN9, MN10: Act as the differential pair to 
sense the voltage difference between BL and 
BLB. 

 MN11: Acts as an enable switch, controlled 
by the sense enable (SE) signal. 

2. Inputs/Outputs: 

 Bitline (BL) and Complementary Bitline (BLB): 
Carry the small voltage difference from the 
SRAM cell. 

 Sense Enable (SE): Activates the sense amplifier 
when high. 

 Output (OUT): Provides the amplified output 
signal. 

3. Operation: 

 Before reading, the bitlines (BL and BLB) are 
precharged to the same voltage level. 

 When the sense amplifier is enabled (SE is high), 
MN11MN11MN11 turns on, and the circuit 
begins sensing. 

 The differential pair (MN9MN9MN9 and 
MN10MN10MN10) detects the slight voltage 
difference between BL and BLB. 

 The output signal (OUT) is driven to a logic level 
(high or low) based on the sensed difference. 

4. Advantages: 

 Amplifies small voltage differences on the 
bitlines for reliable data readout. 

 Operates with high speed and precision. 

Combined Functionality: 

The 6T SRAM Cell stores the data, while the Sense 
Amplifier ensures the stored data is read correctly, even when 
the voltage differences on the bitlines are small. These circuits 
are critical in achieving fast and reliable memory operation in 
SRAM systems. 

 

Fig 11: Sense Amplifier Implementation 

 

Fig 12: Sense Amplifier Symbol 

 

 

Fig 13: 1mm wire on 1 Sense Amplifier 

 

C. Bitline Drivers: 

This component acts as a bitline driver in an SRAM 
system, ensuring proper control of the bitlines during read 
and write operations. Its primary roles are: 
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1. To drive the bitlines during a write operation with the 
correct logic levels corresponding to the input data. 

2. To isolate the bitlines during a read operation, 
allowing the sense amplifier to detect small voltage 
differences accurately. 

Circuit Functionality: 

1. Write Operation: 

 When WEN (Write Enable) is asserted: 

 The circuit actively drives the bitlines (BL and 
NOTBL) with the input data (IN). 

 The inverters and the PMOS/NMOS 
transistor pairs ensure that the correct voltage 
levels are driven onto the bitlines. 

 For example: 

o If IN = 1, BL is driven high 
(VDD), and NOTBL is driven low 
(VSS). 

o If IN = 0, BL is driven low (VSS), 
and NOTBL is driven high 
(VDD). 

 This ensures that the correct logic levels are 
applied to the SRAM cell for writing data. 

2. Read Operation: 

 When REN (Read Enable) is asserted: 

 The circuit likely disables the driving of the 
bitlines (BL and NOTBL) to avoid interfering 
with the small voltage signals generated by 
the SRAM cell during a read. 

 Instead, the bitlines are left in a high-
impedance state or precharged to a specific 
voltage level (e.g., VDD) before sensing. 

3. Idle State: 

 When neither WEN nor REN is active: 

The circuit may enter a low-power state, where it does not 
drive the bitlines actively, reducing power consumption. 

 

 

Fig 14: Bitline Drivers Implementation 

 

Fig 15: Bitline Drivers Symbol 

 

Final Circuit: 

The circuit below shows the final implementation in 
Cadence using all the components listed above. 
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Fig 16: Final Circuit Implementation 

 

IV. SIZING 

We chose not to perform detailed sizing for the SRAM cell 
because the performance and stability of the circuit were 
found to be satisfactory. Through our simulations and initial 
testing, we observed that the design met the required 
operational criteria without the need for further optimization. 
Additionally, due to time constraints, we prioritized 
completing the schematic, layout, and other essential tasks 
over fine-tuning the sizing, as it was deemed non-critical to 
achieving the project objectives within the given timeline. 

 

V. LAYOUT (LVS/DRC) 

Below are the screenshots for LVS & DRC for each 
component & sub units including the final circuit. The 
appendix folder attached to the report contains the screenshots 
too for a better view of the images. 

A word file has also been attached in the appendix 
containing all the layouts. 

 

 
Fig 17: LVS NAND Gate 

 
 

 
Fig 18: DRC NAND Gate 

 
 

 
Fig 19: LVS DECODER 

 
 

 
Fig 20: DRC DECODER 

 
 

 
Fig 21: LVS SRAM CELL 
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Fig 22: DRC SRAM Cell 

 
 

 
Fig 23: LVS Sense Amplifier 

 
 

 
Fig 24: DRC Sense Amplifier 

 
 

 
Fig 25: LVS Bitline Drivers 

 
 

 
Fig 26: DRC Bitline Drivers 

 
 

 
Fig 27: LVS Final Layout 

 
 

Fig 28: DRC Final Layout 
 
 

VI. SIMULATIONS 

Below are some simulations performed on the circuit with 
their results given. 
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A. General Simulations: 

 

Fig 29: Typical Typical Simulation 

 

 

Fig 30: Fast Fast Simulation 

 

B. Read Time: 

 

Fig 31: Read Delay Simulation 

Brown wire: Output 

Red wire: Q 

Pink wire: BLB 

Orange wire: BL 

Green wire: Word Line 

Blue wire: Decoder Enable 

A video is attached in the appendix explaining the results 
for a better understanding of the simulation. 

 

C. Write time: 

 

Fig 32: Write Delay Simulation 

A video is attached in the appendix explaining the results 
for a better understanding of the simulation. 

 

D. Parasitic Capacitance: 

The code below was used to generate the parasitic 
capacitance for each node. 

Code: 

# Path to the PEX file 

pex_file = ‘/mnt/data/PROJECTFINAL.pex.txt’ 

 

# Regex to match capacitance entries 

cap_regex = r”mr_pp\s+’c\s+\”(\S+)\”\s+’\((\”.+?\” 
\”?.*?\”)\)\s+([\d.eE+-]+)f” 

 

# Store extracted capacitance data 

capacitance_data = [] 

 

with open(pex_file, ‘r’) as file: 

    for line in file: 

        match = re.match(cap_regex, line) 

        if match: 

            component = match.group(1) 

            nodes = match.group(2).strip(‘()’).split(‘ ‘) 

            value = float(match.group(3)) * 1e-15  # Convert 
femtofarads to farads 

            capacitance_data.append({‘component’: 
component, ‘nodes’: nodes, ‘value’: value}) 

 

# Display extracted capacitances 

print(f”Extracted {len(capacitance_data)} capacitances:”) 

for cap in capacitance_data[:10]:  # Show the first 10 
entries 

    print(f”Component: {cap[‘component’]}, Nodes: 
{cap[‘nodes’]}, Value: {cap[‘value’]} F”) 
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Result: 

Extracted 21060 capacitances: 

Component: ciXI196/NET17_34, Nodes: [‘”c_4_n”’, 
‘”0”’], Value: 4.7541e-17 F 

Component: ciXI196/NET17_35, Nodes: [‘”c_3_n”’, 
‘”0”’], Value: 6.492350000000001e-16 F 

Component: ciXI196/NET17_36, Nodes: 
[‘”I196/MM8_g”’, ‘”0”’], Value: 2.8134800000000005e-17 
F 

Component: ciXI196/NET17_37, Nodes: 
[‘”I196/NET17_68”’, ‘”0”’], Value: 3.5797500000000004e-
17 F 

Component: ciXI196/NET17_38, Nodes: 
[‘”I196/NET17_67”’, ‘”0”’], Value: 5.12249e-16 F 

Component: ciXI196/NET17_39, Nodes: 
[‘”I196/NET17_66”’, ‘”0”’], Value: 3.5797500000000004e-
17 F 

Component: ciXI196/NET17_40, Nodes: [‘”c_10_n”’, 
‘”0”’], Value: 3.52253e-16 F 

Component: ciXI196/NET17_41, Nodes: [‘”c_5_n”’, 
‘”0”’], Value: 4.1651500000000004e-17 F 

Component: ciXI196/NET17_42, Nodes: [‘”c_30_n”’, 
‘”0”’], Value: 4.017020000000001e-17 F 

Component: ciXI196/NET17_43, Nodes: [‘”c_29_n”’, 
‘”0”’], Value: 1.1852800000000002e-16 F 

 

Key Components 

1. Component Name (ciXI196/NET17_xx): 

o This is a unique identifier for each extracted 
capacitance. The prefix (ciXI196) might 
represent a hierarchical block in your 
design (e.g., a submodule or instance). 

o NET17_xx specifies the specific net 
associated with the parasitic capacitance. 

2. Nodes: 

o The parasitic capacitance is extracted 
between the listed nodes. 

o Example: [‘”c_4_n”’, ‘”0”’] means the 
capacitance exists between node c_4_n and 
the ground node (denoted as “0”). 

3. Value: 

o The capacitance value in Farads. 

o Example: 4.7541e-17 F (47.541 attofarads, 
a very small capacitance). 

Interpretation of Each Entry 

10. ciXI196/NET17_34 

 Nodes: c_4_n to 0 (ground). 

 Value: 4.7541e-17 F (very small, likely due to a 
small parasitic path, e.g., fringe capacitance). 

11. ciXI196/NET17_35 

 Nodes: c_3_n to 0 (ground). 

 Value: 6.492350000000001e-16 F (significantly 
larger, could be due to a wider or longer 
interconnect). 

12. ciXI196/NET17_36 

 Nodes: I196/MM8_g to 0 (ground). 

 Value: 2.8134800000000005e-17 F (small gate 
parasitic capacitance on MM8 transistor). 

13. ciXI196/NET17_37 

 Nodes: I196/NET17_68 to 0 (ground). 

 Value: 3.5797500000000004e-17 F (small 
capacitance, likely due to a short wire or minimal 
coupling). 

14. ciXI196/NET17_38 

 Nodes: I196/NET17_67 to 0 (ground). 

 Value: 5.12249e-16 F (larger capacitance, might 
indicate a significant overlap or coupling effect). 

15. ciXI196/NET17_39 

 Nodes: I196/NET17_66 to 0 (ground). 

 Value: 3.5797500000000004e-17 F (similar to 
NET17_37). 

16. ciXI196/NET17_40 

 Nodes: c_10_n to 0 (ground). 

 Value: 3.52253e-16 F (medium-size parasitic 
capacitance). 

17. ciXI196/NET17_41 

 Nodes: c_5_n to 0 (ground). 

 Value: 4.1651500000000004e-17 F. 

9. ciXI196/NET17_42 

 Nodes: c_30_n to 0 (ground). 

 Value: 4.017020000000001e-17 F. 

10. ciXI196/NET17_43 

 Nodes: c_29_n to 0 (ground). 

 Value: 1.1852800000000002e-16 F (larger than 
most, might indicate significant coupling or area 
overlap). 

General Observations 

1. Values and Scale: 

o The capacitances are on the order of 
attofarads (10⁻¹⁸ F) to femtofarads (10⁻¹⁵ F), 
which is typical for parasitic capacitances in 
modern nanometer-scale designs. 

2. Dominant Contributions: 

o Larger capacitance values (e.g., 6.49235e-
16 F) often arise from: 

 Wider or longer interconnects. 
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 Coupling between closely spaced 
conductors. 

 Overlap of interconnect layers. 

3. Small Values: 

o Smaller capacitances (e.g., 2.81348e-17 F) 
might be due to fringe effects or minimal 
coupling. 

4. Hierarchy and Nodes: 

o The node names (e.g., I196/MM8_g) 
indicate parasitics related to specific parts 
of the circuit, such as transistor gates (_g) 
or interconnect nets. 

 

 

E. Area of the circuitry: 

 

Fig 33: Length of a SRAM Cell 

 

Fig 34: Width of a SRAM Cell 

 

 

Fig 35: Length of Final Circuit 

Fig 36: Width of Final Circuit 

The total area is calculated by: 

Total Area =  339.7 × 1107.8 = 376319.66 unitsଶ  

 

VII. CONCLUSIONS 

This project provided valuable insights into the design and 
implementation of an 8×8 SRAM array using TSMC 180nm 
CMOS technology. Here are the key takeaways: 

 

A. Lessons Learned 

Through the design and layout process, we gained a deeper 
understanding of: 

 The importance of parasitic effects (capacitances and 
resistances) in high-performance memory designs. 

 The critical role of layout precision and hierarchy in 
achieving efficient, manufacturable designs. 

 Optimizing circuit performance by balancing layout 
constraints, circuit sizing, and timing. 

We also experienced firsthand how pitch-matching 
wordline and bitline circuitry to the SRAM array grid ensures 
both uniformity and efficiency in the design process. This 
provided excellent practice in layout and reinforced the 
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importance of adhering to standard design practices in 
memory arrays. 

 

B. Design Decisions 

We made several strategic decisions to ensure 
functionality, efficiency, and simplicity: 

 Prioritizing Pitch-Matching: Wordline and bitline 
circuitry were laid out to be pitch-matched to the 
SRAM array. This choice was made to simplify 
routing, maintain layout uniformity, and align with 
industry practices for memory design. 

 Parasitic Mitigation: High-parasitic nodes were 
identified during extraction, and their impact was 
minimized by carefully managing wire lengths and 
spacing in critical areas. 

 Time Allocation: Due to time constraints, we 
focused on completing the layout and ensuring 
LVS/DRC compliance rather than extensive sizing 
optimization. 

 

C. Handling Long Wires and Resistive Loads 

The 1mm wire in the circuit posed challenges related to 
parasitic capacitances and resistive loading: 

 Mitigation Approach: Parasitic effects were 
analyzed, and wire resistance was factored into 
simulations to ensure timing and signal integrity. 

 Wire Design: The wire was carefully routed and 
optimized within the layout to minimize resistance 
and capacitance while maintaining layout 
constraints. 

 

D. Sizing Choices 

 SRAM Cell Sizing: The standard 6T SRAM cell 
design was used with transistor sizes chosen to 
balance speed, stability, and power consumption. 
The sizing met functional requirements during 
simulations without requiring further tuning. 

 Peripheral Circuitry Sizing: Components like the 
wordline decoder, sense amplifiers, and bitline 
drivers were sized to ensure proper signal 
propagation and accurate read/write operations. 

 Focus on Stability: The sizing decisions prioritized 
stability and robustness over aggressive optimization 
to ensure reliable operation. 

 

E. Layout Choices 

 Pitch-Matching: The wordline and bitline circuitry 
were laid out to align with the SRAM array pitch. 
This approach simplified routing, reduced area 
waste, and ensured alignment with memory cell rows 
and columns, enhancing manufacturability. 

 Hierarchical Design: The design followed a 
hierarchical approach, where sub-blocks like 
decoders, sense amplifiers, and bitline drivers were 
individually laid out and integrated into the final 
array. 

 Minimizing Parasitics: Layout decisions emphasized 
minimizing parasitics by reducing interconnect 
lengths and using efficient routing strategies in 
critical paths. 

In conclusion, this project provided valuable experience in 
SRAM design, from schematic-level decisions to layout and 
parasitic analysis. The use of pitch-matched layout for 
wordline and bitline circuitry not only improved integration 
but also gave us practical experience in precision layout 
design. Despite challenges like handling the 1mm wire, the 
final design met functional requirements, demonstrating a 
balance between performance, layout efficiency, and 
manufacturability. 
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